¥Ù¥Ã¥»¥ë´Ø¿ô


¡¦¥Ù¥Ã¥»¥ë´Ø¿ô

x^{2}y^{\prime\prime}+xy^{\prime}+(x^{2}-\alpha^{2})y=0­¡

y^{\prime\prime}+\displaystyle\frac{1}{x}y^{\prime}+(1-\frac{\alpha^{2}}{x^{2}})y=0¤«¤é

P(x)=\displaystyle\frac{1}{x},\,Q(x)=(1-\frac{\alpha^{2}}{x^{2}})¤È¤·¤Æ

³ÎÄêÆðÛÅÀxP(x)=1(=1+0*x+0*x^{2}+\cdots),\,x^{2}Q(x)=x^{2}-\alpha^{2}(=-\alpha^{2}+0*x+1*x^{2}+0*x^{3}+\cdots)¤«¤é

¥Õ¥í¥Ù¥Ë¥¦¥¹µé¿ô¤Ï

y=x^{\lambda}\displaystyle\sum_{k=0}^{\infty}a_{k}x^{k}=\displaystyle\sum_{k=0}^{\infty}a_{k}x^{k+\lambda}=a_{0}x^{\lambda}+a_{1}x^{\lambda+1}+a_{2}x^{\lambda+2}+\cdots­¢

Èùʬ¤·¤Æ¤¤¤¯¤È

y^{\prime}=\displaystyle\sum_{k=0}^{\infty}(k+\lambda)a_{k}x^{k+\lambda-1}­£

y^{\prime\prime}=\displaystyle\sum_{k=0}^{\infty}(k+\lambda)(k+\lambda-1)a_{k}x^{k+\lambda-2}­¤

­¢­£­¤¤ò­¡¤ËÂåÆþ¤¹¤ë¤È

x^{2}\displaystyle\sum_{k=0}^{\infty}(k+\lambda)(k+\lambda-1)a_{k}x^{k+\lambda-2}+x\sum_{k=0}^{\infty}(k+\lambda)a_{k}x^{k+\lambda-1}+(x^{2}-\alpha^{2})\sum_{k=0}^{\infty}a_{k}x^{k+\lambda}=0¤«¤é

\displaystyle\sum_{k=0}^{\infty}(k+\lambda)(k+\lambda-1)a_{k}x^{k+\lambda}+\sum_{k=0}^{\infty}(k+\lambda)a_{k}x^{k+\lambda}+\sum_{k=0}^{\infty}a_{k}x^{k+\lambda+2}-\sum_{k=0}^{\infty}\alpha^{2}a_{k}x^{k+\lambda}=0

ºÇ½é¤Î¹à

\displaystyle\lambda(\lambda-1)a_{0}x^{\lambda}+(\lambda+1)\lambda\,a_{1}x^{\lambda+1}+\sum_{k=2}^{\infty}(k+\lambda)(k+\lambda-1)a_{k}x^{k+\lambda}

ÂèÆó¹à

\displaystyle\lambda\,a_{0}x^{\lambda}+(\lambda+1)a_{1}x^{\lambda+1}+\sum_{k=2}^{\infty}(k+\lambda)a_{k}x^{k+\lambda}

Âè»°¹à

\displaystyle\sum_{k=2}^{\infty}a_{k-2}x^{k+\lambda}

Âè»Í¹à

\displaystyle\alpha^{2}a_{0}x^{\lambda}+\alpha^{2}a_{1}x^{\lambda+1}+\sum_{k=2}^{\infty}\alpha^{2}a_{k}x^{k+\lambda}

¤³¤ì¤é¤ò¤Þ¤È¤á¤Æ

\displaystyle\{\lambda(\lambda-1)+\lambda-\alpha^{2}\}a_{0}x^{\lambda}+\{(\lambda+1)\lambda+\lambda+1-\alpha^{2}\}a_{1}x^{\lambda+1}+\sum_{k=2}^{\infty}\{(k+\lambda)(k+\lambda-1)a_{k}+(k+x)a_{k}+a_{k-2}-\alpha^{2}a_{k}\}x^{k+\lambda}=0

x¤Î¹±Åù¼°¤Ê¤Î¤Ç

(\lambda^{2}-\alpha^{2})a_{0}=0­¥

\{(\lambda+1)^{2}-\alpha^{2}\}a_{1}=0­¦

(k+\lambda+\alpha)(k+\lambda-\alpha)a_{k}+a_{k-2}=0­§(k=2,3,4\cdots)

­¥¤Ça_{0}\neq\,0¤è¤ê\lambda^{2}-\alpha^{2}=0

\lambda=\pm\alpha¤³¤ì¤ò­¦¤ËÂåÆþ

\{(\pm\alpha+1)^{2}-\alpha^{2}\}a_{1}=0

(\pm\,2\alpha+1)a_{1}=0

a_{1}=0¤È¤¹¤ë¡£

­§¤è¤êa_{k}=-\displaystyle\frac{a_{k-2}}{(k+\lambda-\alpha)(k+\lambda+\alpha)}­¨(k=2,3,4\cdots)

¤³¤ì¤Ï°ì¤ÄÈô¤Ó¤ÎÁ²²½¼°¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£a_{1}=0¤È¤·¤¿°Ù¡¢­¨¤Ëk=3,5,7¤òÂåÆþ¤¹¤ë¤È¡¢½ç¼¡a_{3}=a_{5}=a_{7}=\cdots=0¤È¤Ê¤ë¡£

Ëôa_{2},a_{4},a_{6}\cdots¤Ë¤Ä¤¤¤Æ¤Ï(i)\lambda=\alpha¤Î¤È¤­¤È(ii)\lambda=-\alpha¤Î¤È¤­¤ÎÆóÄ̤ê¤òÄ´¤Ù¤ë¡£

­¨¤Ë¤Ä¤¤¤Æ

(i)\lambda=\alpha¤Î¤È¤­¤Ïa_{k}=-\displaystyle\frac{a_{k-2}}{k(2\alpha+k)}­¨'

k=2¤Î¤È¤­a_{2}=-\displaystyle\frac{a_{0}}{2(2\alpha+2)}=-\frac{a_{0}}{2\cdot\,2(\alpha+1)}

\,k=4¤Î¤È¤­a_{4}=-\displaystyle\frac{a_{2}}{4(2\alpha+4)}=-\frac{1}{4\cdot\,2(\alpha+2)}\{-\frac{1}{2\cdot\,2(\alpha+1)}a_{0}\}=\frac{1}{2\cdot\,4*2^{2}\cdot(\alpha+1)(\alpha+2)}a_{0}

\,k=6¤Î¤È¤­a_{6}=-\displaystyle\frac{1}{6(2\alpha+6)}a_{4}=-\frac{1}{6\cdot\,2(\alpha+3)}\cdot\frac{1}{2\cdot\,4*2^{2}\cdot(\alpha+1)(\alpha+2)}a_{0}=-\frac{1}{2\cdot\,4\cdot\,6*2^{3}\cdot(\alpha+1)(\alpha+2)(\alpha+3)}a_{0} \,a_{2k}=\displaystyle\frac{(-1)^{k}}{2\cdot\,4\cdot\,6\cdots(2k)*2^{k}\cdot(\alpha+1)(\alpha+2)(\alpha+3)\cdots(\alpha+k)}a_{0}

¤è¤Ã¤Æa_{2k}=\displaystyle\frac{(-1)^{k}}{2^{2k}\cdot\,k!(\alpha+1)(\alpha+2)\cdots(\alpha+k)}a_{0}­©(k=1,2,3\cdots)

\,y=\displaystyle\sum_{k=0}^{\infty}a_{2k}x^{2k+\alpha}=a_{0}x^{\alpha}+a_{2}x^{2+\alpha}+a_{4}x^{4+\alpha}+\cdots­ª´ðËܲò¤Î°ì¤Äy_{1}¤È¤·¤Æ¤ª¤¯

¼¡¤Ë¥¬¥ó¥Þ´Ø¿ô¤ò»ÈÍѤ·¤Æ­ª¤ò¤Þ¤È¤á¤ë¡£ ­©¤ÎÍͻҤ«¤éa_{0}=\displaystyle\frac{1}{2^{\alpha}\cdot\Gamma(\alpha+1)}­«¤È¤ª¤±¤ë¡£

a_{2k}x^{2k+\alpha}=\displaystyle\frac{(-1)^{k}}{2^{2k}\cdot\,k!(\alpha+1)(\alpha+2)\cdots(\alpha+k)}\cdot\frac{1}{2^{\alpha}\cdot\Gamma(\alpha+1)}x^{2k+\alpha} =\displaystyle\frac{(-1)^{k}}{k!\Gamma(\alpha+1)(\alpha+1)(\alpha+2)\cdots(\alpha+k)}\cdot\frac{x^{2k+\alpha}}{2^{2k+\alpha}}

¤è¤Ã¤Æ

a_{2k}x^{2k+\alpha}=\displaystyle\frac{(-1)^{k}}{k!\Gamma(\alpha+k+1)}(\frac{x}{2})^{2k+\alpha}­¬¤ò­ª¤ËÂåÆþ¤·¤ÆJ_{a}(x)¤È¤ª¤­

¦Á¼¡¤ÎÂè°ì¼ï¥Ù¥Ã¥»¥ë´Ø¿ô¤Ï

J_{a}(x)=\displaystyle\sum_{k=0}^{\infty}\frac{(-1)^{k}}{k!\Gamma(\alpha+k+1)}(\frac{x}{2})^{2k+\alpha}­­¼ý«Ⱦ·Â¤Ï\infty¤È¤Ê¤ê¤Þ¤¹¡£

(ii)\lambda=\alpha¤Î¤È¤­¤ÏJ_{-a}(x)

(I)°ìÈ̲ò¤Ïy=C_{1}J_{a}(x)+C_{2}J_{-a}(x)\alpha\neq\,n(n=0,1,2\cdots),J_{n}(x),J_{-n}(x)¤Ï°ì¼¡ÆÈΩ

(II)¦Á¤¬0°Ê¾å¤ÎÀ°¿ô\alpha=n(n=0,1,2\cdots),J_{n}(x),J_{-n}(x)¤Ï°ì¼¡½¾Â°

\alpha=n(À°¿ô)¤Ç\lambda=\alpha¤Î¤È¤­

J_{n}(x)=\displaystyle\sum_{k=0}^{\infty}\frac{(-1)^{k}}{k!\Gamma(n+k+1)}(\frac{x}{2})^{2k+n}=\sum_{k=0}^{\infty}\frac{(-1)^{k}}{k!(k+n)!}(\frac{x}{2})^{2k+n}

\lambda=-\alpha¤Î¤È¤­

J_{-n}(x)=\displaystyle\sum_{k=n}^{\infty}\frac{(-1)^{k}}{k!(k-n)!}(\frac{x}{2})^{2k-n}¤³¤³¤Çk=n+m¤È¤ª¤¯(m=0,1,2\cdots)

k<=n-1¤Î¤È¤­¤Ïk-n<0¤È¤Ê¤ë¤Î¤ÇÄêµÁ¤Ç¤­¤Ê¤¤k=n¥¹¥¿¡¼¥È¤Ë¤¹¤ë

=\displaystyle\sum_{m=0}^{\infty}\frac{(-1)^{n+m}}{(m+n)!m!}(\frac{x}{2})^{2m+n}=(-1)^{n}\sum_{m=0}^{\infty}\frac{(-1)^{m}}{m!(m+n)!}(\frac{x}{2})^{2m+n}

¤è¤Ã¤Æ

J_{-n}(x)=(-1)^{n}J_{n}(x)¤È¤Ê¤ë¤Î¤ÇJ_{n}(x)¤ÈJ_{-n}(x)¤Ï°ì¼¡½¾Â°¤È¸À¤¨¤Þ¤¹¡£

\alpha=n(n=0,1,2\cdots)x^{2}y^{\prime\prime}+xy^{\prime}+(x^{2}-n^{2})y=0­¡'¤Î²òJ_{n}(x)¤È°ì¼¡½¾Â°¤Ê¤â¤¦°ì¤Ä¤Î²ò

y=u(x)\cdot\,J_{n}(x)­¯

y^{\prime}=u^{\prime}\cdot\,J_{n}+u\cdot\,J_{n}^{\prime}­°

y^{\prime\prime}=u^{\prime\prime}\cdot\,J_{n}+2u^{\prime}\cdot\,J_{n}^{\prime}+u\cdot\,J_{n}^{\prime\prime}­±

­±­°­¯¤ò­¡'¤ËÂåÆþ¤·¤Æ

x^{2}(u^{\prime\prime}J_{n}+2u^{\prime}J_{n}^{\prime}+uJ_{n}^{\prime\prime})+x(u^{\prime}J_{n}+uJ_{n}^{\prime})+(x^{2}-n^{2})uJ_{n}=0

\{x^{2}J_{n}^{\prime\prime}+xJ_{n}^{\prime}+(x^{2}-n^{2})J_{n}\}u+x^{2}J_{n}u^{\prime\prime}+(2x^{2}J_{n}^{\prime}+xJ_{n})u^{\prime}=0ξÊÕ¤òx^{2}J_{n}¤Ç³ä¤Ã¤Æ

u^{\prime\prime}+(2\displaystyle\cdot\frac{J_{n}^{\prime}}{J_{n}}+\frac{1}{x})u^{\prime}=0

u^{\prime\prime}=-(2\displaystyle\cdot\frac{J_{n}^{\prime}}{J_{n}}+\frac{1}{x})u^{\prime}¤³¤³¤Çu^{\prime}=p¤È¤ª¤¯¤È

p^{\prime}=-(2\displaystyle\frac{J_{n}^{\prime}}{J_{n}}+\frac{1}{x})pÊÑ¿ôʬΥ·Á¤Ç

\displaystyle\int\frac{1}{p}dp=-\int(2\frac{J_{n}^{\prime}}{J_{n}}+\frac{1}{x})dx

\ln|p|=-2\ln|J_{n}|-\ln|x|+C_{1}^{\prime}\ln\,C_{1}^{\prime\prime}

\displaystyle\ln|p|=\ln\frac{C_{1}^{\prime\prime}}{|x|J_{n}^{2}}¤è¤êp=\displaystyle\frac{C_{1}}{x\cdot\,J_{n}^{2}}(c_{1}=\pm\,C_{1}^{\prime\prime}=e^{C_{1}^{\prime}})

\displaystyle\frac{du}{dx}=\frac{C_{1}}{x\cdot\,J_{n}^{2}}ľÀÜÀÑʬ·Á¤Ë¤Æ

u=\displaystyle\int\frac{C_{1}}{x\cdot\,J_{n}^{2}}dx+C_{2}¤³¤³¤ÇǤ°ÕÄê¿ô¤òC_{1}=1,C_{2}=0¤È¤ª¤¤¤Æ

u(x)=\displaystyle\int\frac{1}{x\{J_{n}(x)\}^{2}}dx­²¤ò­¯¤ËÂåÆþ¤¹¤ë¤Èn¼¡¤ÎÂèÆó¼ï¥Ù¥Ã¥»¥ë´Ø¿ô

Y_{n}(x)=J_{n}(x)\displaystyle\int\frac{1}{x\{J_{n}(x)\}^{2}}dx,(n=0,1,2\cdots)